

On-Board Autonomy for Rovers

Rich Washington
RIACS / NASA Ames

John Bresina Howard Cannon NASA Ames

Outline

- Conditional, flexible execution
 - CRL language and executive
 - Current directions
- Limited plan adaptation
 - Skipping plan steps
 - Plan library for "floating contingencies"

Contingent Rover Language (CRL) overview

Flexible, declarative execution language

- Flexible control structures in a declarative, planner-compatible language
- Domain-independent, reusable executive

Backward compatibility & new features

- Allow time-stamped sequences (like Sojourner)
- Allow relative ordered sequences
- Additions: branches, flexible time, state and resource conditions

- Feb 1999 field test, Marsokhod: Lisp CRL Exec
- May 2000 field test, K9: Preliminary C++ CRL Exec
- Multi-platform
 - Marsokhod, K9, MSF, ATRV, CMU Personal Rover, UAV?

Contingent Rover Language (CRL) overview

- Flexible, condition-based execution
 - temporal conditions (absolute, relative)
 - resource conditions
 - state-based conditions

Hierarchical structure

- *task*: executable action

block: sequence of nodes

- branch: choice point

(concurrent blocks)

Sample CRL action

db conditions

Action: (drive ?targetX ?targetY 0.05)

Start temporal conditions: (time 10 300) — absolute time

(time +5 +20) ← relative w.r.t. previous action

Wait-for conditions: (resource energy 5) ← resource condition

Start conditions: (rover-state :mechanical-state :ok)

(rover-target ?targetX ?targetY)

Maintain conditions: (resource energy 2)

variable

End temporal conditions: (time + 0 + 600)

(energy 2)

Continue-on-failure: False

Current directions – CRL / flexible execution

- Limited plan adaptation
 - Floating contingencies
 - Plan step skipping
- Compatibility with planning efforts
 - Concurrent Contingency Planning (Smith, NASA Ames)
 - Concurrent activities
 - Generalization of cross-action temporal constraints
 - Decision-Theoretic Planning for Rovers (Zilberstein, U Mass)
 - MDP-based methods
- Mission infusion

Floating contingencies

- Library of pre-compiled plans
 - Contingencies
 - Backup plans (call home, perform diagnostics, retry)
 - Alternative methods
 - Opportunities
 - "Unexpected" results of on-board science analysis
- Types of floating contingency plans
 - insert, replace
 - node transition, node failure, continuous
- Choice of contingency plan based on expected utility

Floating Contingencies

Floating Contingencies

Floating Contingencies - "Replace"

$$V_1(t_0, e_0) = V_1^{local}(t_0, e_0) + \int_t \int_e [P(t, e|t_0, e_0, S_1) \cdot V_0(t, e)] dt de$$

Floating contingencies – issues

- Interactions between floating contingencies and primary plans
 - Reasoning about preconditions & effects of actions
 - Efficient computation of value function
- Efficient approximations
 - Want to know whether to use floating contingency, not its value
 - Idea: use incremental bounds refinement to handle "obvious" cases quickly
- Recovery plans can vary in locality
 - Use goal structure to direct selection of contingency plans

Ames Reacting to contingencies in a hierarchical plan Center

Ames Reacting to contingencies in a hierarchical plan Center

Ames Reacting to contingencies in a hierarchical plan Center

low power

Ames Reacting to contingencies in a hierarchical plan Research

Center

- Goal structure indicates possible places to restart execution after recovery
 - → places to add recovery plans
 - current point
 - beginning of any enclosing subgoal

- Goal structure indicates possible places to restart execution after recovery
 - → places to add recovery plans
 - current point
 - beginning of any enclosing subgoal

- Goal structure indicates possible places to restart execution after recovery
 - → places to add recovery plans
 - current point
 - beginning of any enclosing subgoal

- Goal structure indicates possible places to restart execution after recovery
 - → places to add recovery plans
 - current point
 - beginning of any enclosing subgoal

Autonomy and Robotics Area, NASA Ames Research Center

Preliminary results

Two resources [0-60], two variables [1-5] Same task graph at each target

Problem	Size of state space	Reachable states	Size of optimal policy
1	7.65×10^7	5.0×10^5	1.6×10^5
2	7.43×10^7	5.4×10^5	2.1×10^5
3	7.43×10^7	5.4×10^5	2.2×10^5

Two resources [0-60]
Four variables [1-5]
Each problem contains 5 targets